اخبار و رویداد ها

مدیریت سایت

مدیریت سایت

وبینار Hot topics in vitiligo در روز جمعه مورخ ۲۱ خرداد ۱۴۰۰ در ساعت ۱۶ الی ۱۸ برگزار گردید.

در این وبینار دکتر محمدعلی نیلفروش زاده، دکتر پروین منصوری، دکتر مهدی طبایی، دکتر علی اصیلیان، دکتر معصومه روحانی نسب، دکتر نجم السادات عاطفی، دکتر کامران بلیغی و دکتر امیررضا حنیف نیا به سخنرانی پرداختند.

همچنین در این جلسه موضوعاتی همچون cellular grafting techniques in vitiligo, Management of difficult vitiligo, Hair fullicle trabsplantation in vitiligo, Tissue grafting techniques in vitiligo, Topical viT D analoges in vitiligo, Role of diet in vitiligo, Newer agents in systemic treatment و Vitiligo: Special groups مورد بحث و بررسی قرار گرفت.

محققان دانشگاه توکیو متروپولیتن (ژاپن) ناهمگنی در پاسخگویی سلولهای بنیادی مزانشیمی (MSC) به مدول الاستیک بسترهای کشت را به صورت کمی توصیف کرده اند. پویایی قرارگیری پروتئین های YAP و RUNX2 در هسته سلول و چگونگی تغییر آن با تغییر میزان سختی محیط کشت، مبنایی را برای طراحی بستر مدول الاستیک جهت کنترل وضعیت سلول های بنیادی فراهم می کند.

می توان تمایز سلول های بنیادی مزانشیمی را با قرار دادن آنها روی سطوحی با سختی مکانیکی یا مدول الاستیک متفاوت، کنترل کرد. سلولهای بنیادی مزانشیمی نسبت به محیط دقیق قرارگیری خود بسیار حساس هستند. کنترل مطمئن بر سلول های بنیادی مزانشیمی برای تحقیقات و کاربردهای بالقوه زیست پزشکی بسیار ارزشمند خواهد بود.

هیرومی میوشی (دانشیار دانشگاه متروپولیتن توکیو) و تیم آنها پویایی وابسته به مدول الاستیک یک انتقال دهنده مکانیکی، YAP و یک عامل تمایز استخوانی (RUNX2) را در سه گروه مختلف MSC مورد تجزیه و تحلیل قرار دادند.

این تیم از یک ژل ژلاتین استایرن شده با مدول الاستیک قابل کنترل استفاده کردند که قابلیت تولید مجدد به مراتب بهتر از دیگر گزینه های محبوبتر کلاژن بود.

درصد سلولهای با YAP موضعی در هسته با افزایش مدول الاستیک به طور خطی افزایش یافته و در 10 کیلو پاسکال برای همه دسته های تجزیه و تحلیل شده به صورت ثابت می شود. افزایش درصد با مدول الاستیک بستر با همان عملکرد خطی توصیف شد.

به طور مشابه، درصد سلول های با محلی سازی هسته ای RUNX2 نیز با مدول الاستیک بستر به صورت خطی افزایش یافته و در 5 کیلو پاسکال به صورت ثابت در می آید.

با استفاده از این نوع اطلاعات، هر کسی می تواند یک ژل با سختی خاص ایجاد کرده و به طور فعال سطح YAP / RUNX2 را در هسته سلولهای بنیادی مزانشیمی کنترل کند. با این کار می توان زمان و چگونگی تمایز سلول ها را تنظیم کرد.

 

تیم تحقیقاتی امیدوارند که این سطح جدید کنترل بر سرنوشت سلول به تسریع تحقیقات در مورد سلولهای بنیادی مزانشیمی کمک کرده و منجر به کاربردهای درمانی هیجان انگیزی شود.

 

لینک خبر: 

stemcell.isti.ir/Zngq

در پژوهشی جدید محققین نشان داده اند که کشت سلول های قلبی در فضا موجب تغییر در بیان ژن های آن ها می شود، اما تنها 10 روز بعد از برگرداندن این سلول ها به شرایط کشت روی کره زمین، این سلول های قلبی به شرایط طبیعی باز می گردند. در این پژوهش جدید، محققین در دانشگاه کالیفرنیا از سلول های بنیادی پرتوان القایی انسانی برای مطالعه اثر سفر فضایی یا شرایط عدم جاذبه روی عملکرد قلب انسانی استفاده کردند. بی وزنی، عدم جاذبه یا اصطلاحا  microgravity، محیطی است که از منظر اثر آن روی بدن انسان به میزان بسیار زیادی ناشناخته باقی مانده است و مطالعاتی از این دست می تواند اطلاعات جدیدی را در این زمینه ارائه دهد.

مطالعات گذشته نشان داده اند که سفرهای فضایی منجر به شروع تغییراتی در عملکرد قلبی از جمله تغییر در ضربان قلب، فشار شریانی پایین تر و برون ده قلبی بالاتر می شود اما در مورد اثر بی وزنی روی عملکرد قلب انسان در سطح سلولی اطلاعات کمی موجود است. این مطالعه با نشان دادن تغییر بیان ژن ها در این شرایط، دیدگاه هایی را در مورد مکانیسم های سلولی ارائه داده است که درک هر چه بهتر و بیشتر آن ها می توان به سلامت فضانوردان در سفرهای طولانی مدت کمک کند و یا دیدگاه های جدیدی را در زمینه بهبود سلامت قلب روی زمین ارائه دهد. محققین برنامه دارند که درمان های مختلفی را روی سلول های قلبی انسانی در شرایط بی وزنی تست کنند تا شاید بتوانند راهی برای جلوگیری از این تغییرات بیابند.

 

لینک خبر: http://stemcell.isti.ir/Znbq

 

Hui Shen و همکارانش در 14 می سال 2021 در مجله ی Cell، گزارشی را منتشر کردند که در آن روشی برای جذب و نگهداری سلولهای بنیادی همه توان پیشنهاد شده است.

از زمانی که برای اولین بارسلولهای بنیادی جنینی (ESC) ایجاد شدند، مقایسه ی عملکردی و مولکولی پتانسیل رشد جنینی و خارج جنینی در کشت in vitro سلولهای همه توان و بلاستومرهای داخل بدن چالش برانگیزبوده است. محققان این پروژه گزارش داده اند که سرکوب پیرایش ژنی در ESC های موش باعث ایجاد یک حالت حدواسط pluripotent به totipotent می شود. Shen و همکارانش با استفاده از مهارکننده ی پیرایش ژنی، پلادینولید B، توانسته اند به کشت in vitro پایدار ESC های همه توان برسند که در سطوح مولکولی قابل مقایسه با بلاستومرهای 2 و 4 سلولی است، به همین علت این سلولها را سلول های شبه بلاستومر قدرتمند (TBLC) نامیده اند.

 سنجش های کایمریک موش همراه با توالی یابی RNA تک سلولی (scRNA-seq) نشان داده که TBLC ها دارای توانایی رشد دو طرفه ی قوی برای تولید دودمان سلول های جنینی و خارج جنینی متعددی هستند. سرکوب پیرایش ژنی باعث مهار گسترده ی پیرایش در ژنهای پر توان( pluripotent genes) می شود، هرچند ژنهای همه توان( totipotent genes ) که حاوی تعداد کمی از اینترونهای کوتاه هستند، به طور موثر پیرایش شده و از نظر رونویسی فعال می شوند. این مطالعه روشی را برای بدست آوردن و نگهداری سلولهای بنیادی توانمند فراهم می کند.

 

لینک خبر: http://stemcell.isti.ir/ZQbq

 

 

جلسه پژوهشی مرکز تحقیقات پوست و سلولهای بنیادی دانشگاه علوم پزشکی تهران صبح روز یکشنبه ۲۶ اردیبهشت ماه ۱۴۰۰ به ریاست دکتر نیلفروش زاده برگزار شد.

 طرح مطالعاتی رایگان درمان‌زخم پای دیابتی زیر نظر پروفسور نیلفروش زاده                          

به اطلاع کلیه علاقمندان جهت شرکت در طرح فوق می رساند به منظور دریافت اطلاعات بیشتر و تعیین نوبت مشاوره با شماره همراه ۰۹۲۱۰۸۱۹۱۷۸ تماس حاصل فرمایند.

 

 

یکی از مراحل کلیدی تومورزایی، مکانیک شروع ایجاد سلول های توموری است که سرنوشت سرطانی شدن آن ها را تعیین می کند. این سلول ها معمولا در سطح تنظیم ژن و از طریق تحقیق روی ژن های سرکوب کننده تومور MYC، p53 یا KRAS مورد بررسی قرار گرفته اند. تغییرات متابولیک درون سلول های توموری یکی از دلایل سرطانی شدن است ولی دلیل نامیرا شدن این سلول های توموری مشخص نیست. در مطالعات صورت گرفته روی مدل مگس سرکه(Drosophila melanogaster)، محققین یک زمان مشخص و دقیق را مشاهده کردند که در آن سلول های شروع کننده تومور نامیرا می شوند و از نظر ژنتیکی دستخوش تغییرات می شوند. آن ها سلول های بنیادی توموری مدل دروزفیلا را مورد استفاده قرار دادند و یک ژن سرکوب کننده تومور موسوم به Brat را حذف کردند. با استفاده از این مدل، محققین به بررسی این امر پرداختند که آیا متابولیسم نقش فعالی را در نامیرایی سلول های توموری Brat  بازی می کند یا خیر. یافته های بدست آمده از دروزوفیلا در ادامه در مورد سلول های انسانی بکار گرفته شد. مشاهده شد که تومورهای Brat بسیار اکسیداتیو هستند و نرخ مصرف اکسیژن آن ها در مقایسه با سلول های طبیعی بالاتر بود. این یافته بسیار جالب بود زیرا تصور همگان بر این است که تومورها بسیار گلیکولیتیک هستند.

بنابراین به نظر می رسد که متابولیسم اکسیداتیو که در آن مسیر انرژی زایی وابسته به اکسیژن میتوکندریایی دخیل است، نقش کلیدی را در نامیرایی سلول های توموری بازی می کند. در طی شروع تومورزایی، غشاهای میتوکندریایی ادغام می شوند. این تغییر بزرگ در ریخت میتوکندری ها منجر به افزایش کارایی فسفریلاسیون اکسیداتیو می شود که دلیل سطح افزایش یافته NAD+ و NADH در سرطان است که معمولا در سرطان مشاهده می شوند. به عقیده محققین فسفریلاسیون اکسیداتیو افزایش یافته و متابولیسم NADH/NAD+ افزایش یافته ناشی از ادغام غشاهای میتوکندریایی عامل اصلی در شروع نامیرا شدن سلول های توموری است.

 

                                                                     Link: stemcell.isti.ir/ZF7q  

 

ستاد توسعه علوم و فناوری های سلول‌های بنیادی معاونت علمی و فناوری ریاست جمهوری با همکاری دانشگاه علوم پزشکی تهران به نمایندگی از جامعه فرهیخته کشور افتخار دارد؛ برگزاری مجازی ششمین سمپوزیوم ژنتیک و سلول‌های بنیادی با ر‌ویکرد ژن درمانی را به حضور علاقمندان این فناوری اعلام نماید.